

College of Agricultural, Human, and Natural Resource Sciences
Center for Precision & Automated Agricultural Systems

Honeycrisp Production In Washington Lessons Learned

Karen Lewis Washington State University Extension kmlewis@wsu.edu

As it should be

18th leaf Fuji

Maverick Orchard

Volume has tripled in last 5 years with 8.9M boxes in 2015

Nursery

Redder and Earlier

Royal Red FirestormCameronDAS 10Select'Premier'

...Challenges...

- Bi-annual bearing
- Judging maturity
- Bruising
- Decay
- Sunburn
- Sensitive to low oxygen, high CO₂, low storage temps.
- Off flavor after longer storage
- Stem bowl and side splits
- Internal browning on the tree
- Birds love it
- Sequential picking needed
- Short stems
- Earwigs

Until something better comes along

Remarkably firm, sweet, tangy, crisp, and unbelievably juicy. These are words that describe Cosmic Crisp, the latest creation of WSU's world-class tree fuilt breeding program. The apple has a rich red-purple color over a green-yellow background and is speckled with lenticels. If the spots that look fike starbursts. It is these attributes that helped determine the name for the apple.

> www.cosmiccrisp.com PRODUCT OF USA

Bruce Allen Mike Robinson Richard Thomason

Sunburn/delayed sunburn

Red Color

Cropload

Average sunburn development (Scale 0-5)

Heat Stress and Sun Stress

Rotating applications of Raynox and Surround EC / misting Shade cloth Shade Cloth + EC

Effects on physiology of apple under photo-selective anti-hail nets

Dr's Lee Kalcsits, Stefano Musacchi, Desmond Layne Washington State University

Photoselective Netting Colors

Blue, Pearl and Red netting compared to an uncovered control

	Mean Temperature (°F)	Relative Humidity	Light Intensity (umol m ⁻² s ⁻¹)	Wind Speed (feet s ⁻¹)
Control	76.75 a	0.387 a	1804 b	5.53 a
Blue	76.29 b	0.384 a	1404 a	3.45 b
Pearl	76.32 b	0.376 a	1459 a	3.63 b
Red	76.14 b	0.379 a	1355 a	3.33 b

Top left: A 'Honeycrisp' apple showing symptoms of severe sunburn outside of netting. Top right: A 'Honeycrisp' apple under netting showing no sunburn symptoms. Bottom left. High resolution thermal images of 'Honeycrisp' apple outside of netting. Bottom right: A thermal image of 'Honeycrisp' apple under photoselective netting.

Credit: Sindhuja Sankaran and Lav Khot

Wind?

Bird Management

• 4% sugar solution:

• 4lbs. Cane sugar / 100gal.

• Bird Shield

GS Long: Scaredancer

Light management

- Pre-harvest reflective foil
- Extenday products
 - Difficult on rolling slopes

Roots

- Won't Bloom (M26 / M111)
- Won't Return (M9 types)
- Won't Grow (M9 types)
- Low Yields (Need more precocious)

2015 East Wenatchee Honeycrisp

■ Spring 2015 ■ Fall 2015

Statistically, G.890 is biggest;

G.210, G.30, G.935, G.969 and M.9 Nic 29 are similar; G.11, M.9 337, G.41 and G.214 are the same; Bud 9 smallest,

2015 Oroville Honeycrisp Replant

Spring 2015 Fall 2015

Statistically, M.106 is biggest, G.210 is separate; G.890, G.969, G.935 are similar; M.9 Nic29, G.214, G.11, M.9 337 and G.41 are similar; Bud 9 smallest. **Current interest:**

G.214, G.210, G.969 and G.890 for extra vigor

These rootstocks are VIGOROUS as non bearing trees

Crop density will calm them

Vigor/HEALTH will sustain very high yields better than M.9

2nd Year – Sleeping Eye Honeycrisp Planting

Systems

- We have on every system responds well to 3D and 2D
- Vertical and V
- Most are successful
- Grower (and site) dependent

BMR: Royal City

Fill the space / Grow the Tree

- More fruiting units per acre
- Stress
 - Nitrogen
 - Water
 - Weed free
 - Netting / cooling
 - Mildew control
 - Remove flowers

End of first leaf, 2.5' X 11' Most trees to 7 feet. Top wire 11 feet

Aggressive fertigation Weekly soil testing for salt and N Weekly mildew and leaf feed spray

Crop load management = Higher average production

8th leaf 3 year ave. 31 BPA

6th Leaf 3 year ave. 69 BPA

Crop load management = Consistent quality

50% 3rd grade no top grade 80% top grade

Crop load management = Consistent size

Size 27 \$30 a box

Size 80 \$70 a box

Large size equals more Bitterpit

Large size = reduced packouts

Honeycı	risp return p	er bin						
Peak size	Ave packs / bin	Ave \$ box	Gross \$ bin	Packing cost per bin	Net per bin			
36	10	\$30	\$300	\$200	\$100			
80	16	\$70	\$1120	\$232	\$888			
Packouts on lots heavy to very large sizes are always low.								
Size 80 Packing costs from WSU fact sheet fso62e Galinato and Gallardo								
Ave \$ / box are a S\	NAG estimate based on obse	Ν	/like Robinson					

Count buds, Count flowers, Count fruits, Repeat.....

Get the look, look a lot

Honeycrisp thins like a Gala when young and Fuji when mature

Positives: Low cost. No labor demand **Negatives:** Lack of precision, potential for over-thinning, under-thinning and unwanted singles

Cost

Honeyc	risp produ	iction costs		
Yield	Growing	Hand bloom		Total Per
	cost	thinning cost	Harvest cost	acre
69 BPA	\$5 <i>,</i> 582	\$1,500	\$2,760	\$9,842
31 BPA	\$5 <i>,</i> 582	\$0	\$1,240	\$6,822
				\$3,020
Growing costs fr	om WSU fact sheet fso	062e Galinato and Gallardo		
Assume 1452 TP	A spindle			

Net per acre, small vs. large size fruit

				Packing					
Peak size	Ave packs / bin	Ave \$ box	Gross \$ bin	cost per bin	Net per bin	Bins	Per acre	Cost	Per Acre net
36	10	\$30	\$300	\$200	\$100	69	\$6,900	\$6,822	\$78
80	16	\$70	\$1120	\$232	\$888	69	\$61,272	\$9,842	\$51,430

Net per acre, low vs. high production

				Packing					
Peak	Ave packs	Ave \$	Gross \$	cost per	Net per		Per		
size	/ bin	box	bin	bin	bin	Bins	acre	Cost	Net
							\$27,52		
80	16	\$70	\$1120	\$232	\$888	31	8	\$6,822	\$20,706
							\$61,27		
80	16	\$70	\$1120	\$232	\$888	69	2	\$9,842	\$51,430

Earwigs

Doubles reduce size and increase yield

Honeycrisp in Columbia Basin of Washington

Preharvest sprays

• ReTain and Harvista

-Widen harvest window

Stop Drop (NAA)

-Twice

Timing of harvest

Maturity determination

Color Percent acid 0.6 Starch movement 60% Firmness 14+ Soluble solids concentration 13

Maturity determination

FRUIT NEEDS TO TASTE GOOD!

The Good the Bad and the Ugly

6

- Ugly = run now, Bad = run as soon as Good = Run between Jan. ap hosi
 - What factors decid
 - Age of B

- ant size
- ge aex of fruit at harvest (mineral analysis)
- block History has it gone long term before?
- Fruit pressure
- Malic acid content
- Fruit starch content
- Willingness of grower to take a chance

Growers tag bins Green(good), yellow(bad) and Red(Ugly)

Bruising

Flavor Wake Up

Flavor Classification

